Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 251
Filtrar
1.
PLoS One ; 19(4): e0298002, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38635587

RESUMO

The impact of microbiome in animal physiology is well appreciated, but characterization of animal-microbe symbiosis in marine environments remains a growing need. This study characterizes the microbial communities associated with the moon jellyfish Aurelia coerulea, first isolated from the East Pacific Ocean and has since been utilized as an experimental system. We find that the microbiome of this Pacific Aurelia culture is dominated by two taxa, a Mollicutes and Rickettsiales. The microbiome is stable across life stages, although composition varies. Mining the host sequencing data, we assembled the bacterial metagenome-assembled genomes (MAGs). The bacterial MAGs are highly reduced, and predict a high metabolic dependence on the host. Analysis using multiple metrics suggest that both bacteria are likely new species. We therefore propose the names Ca. Mariplasma lunae (Mollicutes) and Ca. Marinirickettsia aquamalans (Rickettsiales). Finally, comparison with studies of Aurelia from other geographical populations suggests the association with Ca. Mariplasma lunae occurs in Aurelia from multiple geographical locations. The low-diversity microbiome of Aurelia provides a relatively simple system to study host-microbe interactions.


Assuntos
Microbiota , Cifozoários , Animais , Cifozoários/fisiologia , Metagenoma , Bactérias/genética , Oceano Pacífico
2.
Mar Environ Res ; 196: 106441, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38484650

RESUMO

Scyphozoan jellyfish, known for their evolutionary position and ecological significance, are thought to exhibit relatively notable resilience to ocean acidification. However, knowledge regarding the molecular mechanisms underlying the scyphozoan jellyfish response to acidified seawater conditions is currently lacking. In this study, two independent experiments were conducted to determine the physiological and molecular responses of moon jellyfish (Aurelia coerulea) polyps to within- and trans-generational exposure to two reduced pH treatments (pH 7.8 and pH 7.6). The results revealed that the asexual reproduction of A. coerulea polyps significantly declined under acute exposure to pH 7.6 compared with that of polyps at ambient pH conditions. Transcriptomics revealed a notable upregulation of genes involved in immunity and cytoskeleton components. In contrast, genes associated with metabolism were downregulated in response to reduced pH treatments after 6 weeks of within-generational acidified conditions. However, reduced pH treatments had no significant influence on the asexual reproduction of A. coerulea polyps after exposure to acidified conditions over a total of five generations, suggesting that A. coerulea polyps may acclimate to low pH levels. Transcriptomics revealed distinct gene expression profiles between within- and trans-generational exposure groups to two reduced pH treatments. The offspring polyps of A. coerulea subjected to trans-generational acidified conditions exhibited both upregulated and downregulated expression of genes associated with metabolism. These physiological and transcriptomic characteristics of A. coerulea polyps in response to elevated CO2 levels suggest that polyps produced asexually under acidified conditions may be resilient to such conditions in the future.


Assuntos
Cnidários , Cifozoários , Animais , Água do Mar , Transcriptoma , Concentração de Íons de Hidrogênio , Cifozoários/fisiologia , Perfilação da Expressão Gênica
3.
Bioinspir Biomim ; 19(2)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38330441

RESUMO

The vast majority of the ocean's volume remains unexplored, in part because of limitations on the vertical range and measurement duration of existing robotic platforms. In light of the accelerating rate of climate change impacts on the physics and biogeochemistry of the ocean, the need for new tools that can measure more of the ocean on faster timescales is becoming pressing. Robotic platforms inspired or enabled by aquatic organisms have the potential to augment conventional technologies for ocean exploration. Recent work demonstrated the feasibility of directly stimulating the muscle tissue of live jellyfish via implanted microelectronics. We present a biohybrid robotic jellyfish that leverages this external electrical swimming control, while also using a 3D printed passive mechanical attachment to streamline the jellyfish shape, increase swimming performance, and significantly enhance payload capacity. A six-meter-tall, 13 600 l saltwater facility was constructed to enable testing of the vertical swimming capabilities of the biohybrid robotic jellyfish over distances exceeding 35 body diameters. We found that the combination of external swimming control and the addition of the mechanical forebody resulted in an increase in swimming speeds to 4.5 times natural jellyfish locomotion. Moreover, the biohybrid jellyfish were capable of carrying a payload volume up to 105% of the jellyfish body volume. The added payload decreased the intracycle acceleration of the biohybrid robots relative to natural jellyfish, which could also facilitate more precise measurements by onboard sensors that depend on consistent platform motion. While many robotic exploration tools are limited by cost, energy expenditure, and varying oceanic environmental conditions, this platform is inexpensive, highly efficient, and benefits from the widespread natural habitats of jellyfish. The demonstrated performance of these biohybrid robots suggests an opportunity to expand the set of robotic tools for comprehensive monitoring of the changing ocean.


Assuntos
Cifozoários , Animais , Cifozoários/fisiologia , Natação/fisiologia , Locomoção/fisiologia , Aceleração , Oceanos e Mares
4.
Sci Rep ; 13(1): 11086, 2023 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-37422482

RESUMO

Monitoring, sensing, and exploration of over 70% of the Earth's surface that is covered with water is permitted through the deployment of underwater bioinspired robots without affecting the natural habitat. To create a soft robot actuated with soft polymeric actuators, this paper describes the development of a lightweight jellyfish-inspired swimming robot, which achieves a maximum vertical swimming speed of 7.3 mm/s (0.05 body length/s) and is characterized by a simple design. The robot, named Jelly-Z, utilizes a contraction-expansion mechanism for swimming similar to the motion of a Moon jellyfish. The objective of this paper is to understand the behavior of soft silicone structure actuated by novel self-coiled polymer muscles in an underwater environment by varying stimuli and investigate the associated vortex for swimming like a jellyfish. To better understand the characteristics of this motion, simplified Fluid-structure simulation, and particle image velocimetry (PIV) tests were conducted to study the wake structure from the robot's bell margin. The thrust generated by the robot was also characterized with a force sensor to ascertain the force and cost of transport (COT) at different input currents. Jelly-Z is the first robot that utilized twisted and coiled polymer fishing line (TCPFL) actuators for articulation of the bell and showed successful swimming operations. Here, a thorough investigation on swimming characteristics in an underwater setting is presented theoretically and experimentally. We found swimming metrics of the robot are comparable with other jellyfish-inspired robots that have utilized different actuation mechanisms, but the actuators used here are scalable and can be made in-house relatively easily, hence paving way for further advancements into the use of these actuators.


Assuntos
Robótica , Cifozoários , Animais , Natação/fisiologia , Polímeros , Robótica/métodos , Fenômenos Biomecânicos/fisiologia , Cifozoários/fisiologia
5.
Ecotoxicology ; 32(5): 618-627, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37269410

RESUMO

The aim of this study is to investigate for the first time the uptake and ecotoxicological effects of nanoplastics (NPs) in a marine cnidarian. Ephyrae of the moon jellyfish Aurelia sp. of different ages (0 and 7 days old) were exposed to negatively charged polystyrene NPs for 24 h; then, the uptake was assessed through traditional and novel techniques, namely microscopy and three-dimensional (3D) holotomography. Immobility and behavioral responses (frequency of pulsations) of ephyrae were also investigated to clarify if NP toxicity differed along the first life stages. NP uptake was observed in ephyrae thanks to the 3D technique. Such internalization did not affect survival, but it temporarily impaired the pulsation mode only in 0 day old ephyrae. This may be ascribed to the negative charged NPs, contributing to jellyfish behavioral alteration. These findings promote 3D holotomography as a suitable tool to detect NPs in marine organisms. Moreover, this study recommends the use of cnidarians of different ages to better assess NP ecotoxicological effects in these organisms, key components of the marine food web.


Assuntos
Cifozoários , Animais , Cifozoários/fisiologia , Microplásticos/farmacologia , Poliestirenos/farmacologia , Ecotoxicologia
6.
Elife ; 122023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37347515

RESUMO

Previously we reported evidence that a regenerative response in the appendages of moon jellyfish, fruit flies, and mice can be promoted by nutrient modulation (Abrams et al., 2021). Sustar and Tuthill subsequently reported that they had not been able to reproduce the induced regenerative response in flies (Sustar and Tuthill, 2023). Here we discuss that differences in the amputation method, treatment concentrations, age of the animals, and stress management explain why they did not observe a regenerative response in flies. Typically, 30-50% of treated flies showed response in our assay.


Assuntos
Drosophila , Cifozoários , Animais , Camundongos , Cifozoários/fisiologia , Nutrientes
7.
Integr Comp Biol ; 63(6): 1442-1454, 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-37355780

RESUMO

In animals, epithelial tissues are barriers against the external environment, providing protection against biological, chemical, and physical damage. Depending on the organism's physiology and behavior, these tissues encounter different types of mechanical forces and need to provide a suitable adaptive response to ensure success. Therefore, understanding tissue mechanics in different contexts is an important research area. Here, we review recent tissue mechanics discoveries in three early divergent non-bilaterian systems-Trichoplax adhaerens, Hydra vulgaris, and Aurelia aurita. We highlight each animal's simple body plan and biology and unique, rapid tissue remodeling phenomena that play a crucial role in its physiology. We also discuss the emergent large-scale mechanics in these systems that arise from small-scale phenomena. Finally, we emphasize the potential of these non-bilaterian animals to be model systems in a bottom-up approach for further investigation in tissue mechanics.


Assuntos
Epitélio , Hydra , Placozoa , Cifozoários , Animais , Epitélio/fisiologia , Placozoa/fisiologia , Cifozoários/fisiologia , Hydra/fisiologia
8.
Mar Pollut Bull ; 187: 114609, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36652861

RESUMO

Jellyfish are planktonic predators that may be susceptible to ingesting microplastics. However, the effects of MP exposure on jellyfish are poorly understood. In this study, the ingestion and egestion of polystyrene microbeads, and its chronic physiological effects on Rhopilema esculentum at an environmental concentration (100 items/L) and a predicted concentration (1000 items/L) were evaluated. The results showed that the ingestion amount of juvenile medusae was relatively low. The MP egestion rates reached 100 % within 9 h of clearance. Chronic exposure (15 days) to MPs at environmental concentrations led to no adverse impacts. Nevertheless, the predicted concentration of MP exposure induced growth inhibition, a reduction in assimilation efficiency, oxygen consumption increase, and lipase enzyme activity reduction in the jellyfish, indicating that MPs can cause adverse effects on the energy budget of jellyfish in the near future. Our study provides new insights into the potential risk of MPs in marine environments.


Assuntos
Cifozoários , Poluentes Químicos da Água , Animais , Microplásticos , Poliestirenos/toxicidade , Poliestirenos/análise , Plásticos/toxicidade , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Cifozoários/fisiologia , Ingestão de Alimentos
9.
J Exp Biol ; 225(Suppl_1)2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35258622

RESUMO

Although neural tissues in cnidarian hydroids have a nerve net structure, some cnidarian medusae contain well-defined nerve tracts. As an example, the hydrozoan medusa Aglantha digitale has neural feeding circuits that show an alignment and condensation, which is absent in its relatives Aequorea victoria and Clytia hemisphaerica. In some cases, neural condensations take the form of fast propagating giant axons concerned with escape or evasion. Such giant axons appear to have developed from the fusion of many, much finer units. Ribosomal DNA analysis has identified the lineage leading to giant axon-based escape swimming in Aglantha and other members of the Aglaura clade of trachymedusan jellyfish. The Aglaura, along with sister subclades that include species such as Colobonema sericeum, have the distinctive ability to perform dual swimming, i.e. to swim at either high or low speeds. However, the form of dual swimming exhibited by Colobonema differs both biomechanically and physiologically from that in Aglantha and is not giant axon based. Comparisons between the genomes of such closely related species might provide a means to determine the molecular basis of giant axon formation and other neural condensations. The molecular mechanism responsible may involve 'fusogens', small molecules possibly derived from viruses, which draw membranes together prior to fusion. Identifying these fusogen-based mechanisms using genome analysis may be hindered by the many changes in anatomy and physiology that followed giant axon evolution, but the genomic signal-to-noise ratio may be improved by examining the convergent evolution of giant axons in other hydrozoa, such as the subclass Siphonophora.


Assuntos
Hidrozoários , Cifozoários , Animais , Axônios/fisiologia , Hidrozoários/genética , Filogenia , Cifozoários/fisiologia , Natação
10.
Elife ; 102021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34874003

RESUMO

Can limb regeneration be induced? Few have pursued this question, and an evolutionarily conserved strategy has yet to emerge. This study reports a strategy for inducing regenerative response in appendages, which works across three species that span the animal phylogeny. In Cnidaria, the frequency of appendage regeneration in the moon jellyfish Aurelia was increased by feeding with the amino acid L-leucine and the growth hormone insulin. In insects, the same strategy induced tibia regeneration in adult Drosophila. Finally, in mammals, L-leucine and sucrose administration induced digit regeneration in adult mice, including dramatically from mid-phalangeal amputation. The conserved effect of L-leucine and insulin/sugar suggests a key role for energetic parameters in regeneration induction. The simplicity by which nutrient supplementation can induce appendage regeneration provides a testable hypothesis across animals.


The ability of animals to replace damaged or lost tissue (or 'regenerate') is a sliding scale, with some animals able to regenerate whole limbs, while others can only scar. But why some animals can regenerate while others have more limited capabilities has puzzled the scientific community for many years. The likes of Charles Darwin and August Weismann suggested regeneration only evolves in a particular organ. In contrast, Thomas Morgan suggested that all animals are equipped with the tools to regenerate but differ in whether they are able to activate these processes. If the latter were true, it could be possible to 'switch on' regeneration. Animals that keep growing throughout their life and do not regulate their body temperatures are more likely to be able to regenerate. But what do growth and temperature regulation have in common? Both are highly energy-intensive, with temperature regulation potentially diverting energy from other processes. A question therefore presents itself: could limb regeneration be switched on by supplying animals with more energy, either in the form of nutrients like sugars or amino acids, or by giving them growth hormones such as insulin? Abrams, Tan, Li et al. tested this hypothesis by amputating the limbs of jellyfish, flies and mice, and then supplementing their diet with sucrose (a sugar), leucine (an amino acid) and/or insulin for eight weeks while they healed. Typically, jellyfish rearrange their remaining arms when one is lost, while fruit flies are not known to regenerate limbs. House mice are usually only able to regenerate the very tip of an amputated digit. But in Abrams, Tan, Li et al.'s experiments, leucine and insulin supplements stimulated limb regeneration in jellyfish and adult fruit flies, and leucine and sucrose supplements allowed mice to regenerate digits from below the second knuckle. Although regeneration was not observed in all animals, these results demonstrate that regeneration can be induced, and that it can be done relatively easily, by feeding animals extra sugar and amino acids. These findings highlight increasing the energy supplies of different animals by manipulating their diets while they are healing from an amputated limb can aid in regeneration. This could in the future pave the way for new therapeutic approaches to tissue and organ regeneration.


Assuntos
Amputação Cirúrgica/métodos , Drosophila/fisiologia , Extremidades/fisiologia , Membro Posterior/fisiologia , Regeneração , Cifozoários/fisiologia , Animais , Camundongos
11.
Sci Rep ; 11(1): 18653, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34545165

RESUMO

Ecologists and evolutionary biologists have been looking for the key(s) to the success of scyphomedusae through their long evolutionary history in multiple habitats. Their ability to generate young medusae (ephyrae) via two distinct reproductive strategies, strobilation or direct development from planula into ephyra without a polyp stage, has been a potential explanation. In addition to these reproductive modes, here we provide evidence of a third ephyral production which has been rarely observed and often confused with direct development from planula into ephyra. Planulae of Aurelia relicta Scorrano et al. 2017 and Cotylorhiza tuberculata (Macri 1778) settled and formed fully-grown polyps which transformed into ephyrae within several days. In distinction to monodisk strobilation, the basal polyp of indirect development was merely a non-tentaculate stalk that dissolved shortly after detachment of the ephyra. We provide a fully detailed description of this variant that increases reproductive plasticity within scyphozoan life cycles and is different than either true direct development or the monodisk strobilation. Our observations of this pattern in co-occurrence with mono- and polydisk strobilation in Aurelia spp. suggest that this reproductive mode may be crucial for the survival of some scyphozoan populations within the frame of a bet-hedging strategy and contribute to their long evolutionary success throughout the varied conditions of past and future oceans.


Assuntos
Oceanos e Mares , Cifozoários/fisiologia , Animais , Estágios do Ciclo de Vida , Reprodução/fisiologia , Cifozoários/anatomia & histologia , Cifozoários/crescimento & desenvolvimento
12.
PLoS One ; 16(8): e0254983, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34347820

RESUMO

Ocean acidification and warming are challenging marine organisms and ecosystems around the world. The synergetic effects of these two climate change stressors on jellyfish remain still understudied. Here, we examine the independent and combined effects of these two environmental variables on polyp population dynamics of the Mediterranean jellyfish Cotylorhiza tuberculata. An experiment was conducted to examine asexual reproduction by budding and strobilation considering current and ca. 2100 winter (Trial 1, 36 days) and summer (Trial 2, 36 days) conditions under the RCP8.5 (IPCC 2013). In Trial 1, a temperature of 18°C and two pH levels (current: 7.9 and, reduced: 7.7) were tested. Trial 2 considered two temperature levels 24°C and 30°C, under current and reduced acidification conditions (8.0 and 7.7, respectively). Ephyrae size and statolith formation of released ephyrae from polyps exposed to summer temperatures under both acidification treatment was also analyzed. Zooxanthellae density inside the polyps throughout the experiment was measured. C. tuberculata polyps could cope with the conditions mimicked in all experimental treatments and no significant effect of pH, temperature, or the combination of both variables on the abundance of polyps was observed. At 18°C, strobilation was reduced under high PCO2 conditions. Under summer treatments (24°C and 30°C), percentage strobilation was very low and several released ephyrae suffered malformations and reduced size, as a consequence of reduced pH and elevated temperatures, separately. The number of statoliths was not affected by pH or temperature, however, bigger statoliths were formed at elevated temperatures (30°C). Finally, zooxanthellae density was not affected by experimental conditions, even if, the duration of the experiment significantly affected symbiont concentration. Our results show that even though polyps of C. tuberculata would thrive the future worst scenario predicted for the Mediterranean Sea, their capacity to undergo a proper strobilation and to produce healthy ephyrae will be more vulnerable to climate induced environmental conditions, thereby affecting medusae recruitment and, therefore, population dynamics of the species.


Assuntos
Ácidos/química , Mudança Climática , Oceanos e Mares , Reprodução Assexuada/fisiologia , Cifozoários/fisiologia , Simbiose/fisiologia , Álcalis/química , Animais , Dióxido de Carbono/análise , Modelos Lineares , Oxigênio/análise , Temperatura
13.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34301888

RESUMO

Water mixing is a critical mechanism in marine habitats that governs many important processes, including nutrient transport. Physical mechanisms, such as winds or tides, are primarily responsible for mixing effects in shallow coastal systems, but the sheltered habitats adjacent to mangroves experience very low turbulence and vertical mixing. The significance of biogenic mixing in pelagic habitats has been investigated but remains unclear. In this study, we show that the upside-down jellyfish Cassiopea sp. plays a significant role with respect to biogenic contributions to water column mixing within its shallow natural habitat ([Formula: see text] m deep). The mixing contribution was determined by high-resolution flow velocimetry methods in both the laboratory and the natural environment. We demonstrate that Cassiopea sp. continuously pump water from the benthos upward in a vertical jet with flow velocities on the scale of centimeters per second. The volumetric flow rate was calculated to be 212 L⋅h-1 for average-sized animals (8.6 cm bell diameter), which translates to turnover of the entire water column every 15 min for a median population density (29 animals per m2). In addition, we found Cassiopea sp. are capable of releasing porewater into the water column at an average rate of 2.64 mL⋅h-1 per individual. The release of nutrient-rich benthic porewater combined with strong contributions to water column mixing suggests a role for Cassiopea sp. as an ecosystem engineer in mangrove habitats.


Assuntos
Ecossistema , Meio Ambiente , Cifozoários/fisiologia , Água/fisiologia , Animais , Densidade Demográfica
14.
Aquat Toxicol ; 236: 105866, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34052718

RESUMO

Herbicides are among the most detected pesticides in coastal environments. Herbicides may impact non-target organisms, but invertebrates that have a symbiotic relationship with microalgae (zooxanthellae) may be particularly susceptible. How zooxanthellae influence the response of organisms to herbicides, however, remains untested. We exposed zooxanthellate and azooxanthellate Cassiopea xamachana medusae to environmentally relevant concentrations of the herbicide atrazine (0 µg L - 1, 7 µg L - 1 and 27 µg L - 1) for 20 days. We hypothesised that atrazine would have adverse effects on the size, rate of bell contractions and, respiration of medusae, but that effects would be more severe in zooxanthellate than azooxanthellate medusae. We also predicted that photosynthetic efficiency, chlorophyll a (Chla) content and zooxanthellae density would decrease in zooxanthellate medusae exposed to atrazine. Both zooxanthellate and azooxanthellate medusae shrank, yet the size-specific respiration rates were not constant during the experiment. Photosynthetic efficiency of zooxanthellate medusae significantly decreased at 7 and 27 µgL-1 atrazine, but atrazine did not affect the Chla content or zooxanthellae density. Our results showed that even though atrazine inhibited photosynthesis, zooxanthellae were not expelled from the host. We conclude that the presence of zooxanthellae did not increase the susceptibility of C. xamachana medusae to atrazine.


Assuntos
Herbicidas/toxicidade , Cifozoários/fisiologia , Poluentes Químicos da Água/toxicidade , Animais , Atrazina , Clorofila A , Microalgas , Fotossíntese/efeitos dos fármacos , Cifozoários/efeitos dos fármacos , Simbiose
15.
Sci Robot ; 6(50)2021 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-34043579

RESUMO

Elasticity has been linked to the remarkable propulsive efficiency of pulse-jet animals such as the squid and jellyfish, but reports that quantify the underlying dynamics or demonstrate its application in robotic systems are rare. This work identifies the pulse-jet propulsion mode used by these animals as a coupled mass-spring-mass oscillator, enabling the design of a flexible self-propelled robot. We use this system to experimentally demonstrate that resonance greatly benefits pulse-jet swimming speed and efficiency, and the robot's optimal cost of transport is found to match that of the most efficient biological swimmers in nature, such as the jellyfish Aurelia aurita The robot also exhibits a preferred Strouhal number for efficient swimming, thereby bridging the gap between pulse-jet propulsion and established findings in efficient fish swimming. Extensions of the current robotic framework to larger amplitude oscillations could combine resonance effects with optimal vortex formation to further increase propulsive performance and potentially outperform biological swimmers altogether.


Assuntos
Decapodiformes/fisiologia , Robótica/instrumentação , Natação/fisiologia , Animais , Fenômenos Biomecânicos , Materiais Biomiméticos , Decapodiformes/anatomia & histologia , Desenho de Equipamento , Modelos Biológicos , Robótica/estatística & dados numéricos , Cifozoários/fisiologia , Vibração
16.
PLoS One ; 16(4): e0249756, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33826668

RESUMO

Pelagia noctiluca is the most common jellyfish in the Western Mediterranean Sea, living in oceanic waters with a holoplanktonic lifecycle. Frequent outbreaks have been well documented in coastal areas, yet little is known about their offshore distribution. In this study we address the relationship between oceanographic structures and the distribution of P. noctiluca ephyrae along the central continental slope of the Western Mediterranean, covering a wide latitudinal gradient, during July-August 2016. The region is characterized by a rich and complex mesoscale surface circulation driven by the inflow of Atlantic Water into the Western Mediterranean through the Strait of Gibraltar. The results revealed a high variability in the ephyrae spatial paterns related with different water masses and the resulting mesoscale hydrographic features. Their horizontal distribution showed a clear latitudinal gradient with high abundances in the south, associated with recent Atlantic Water, and low abundances or absence in the north, in coincidence with the old Atlantic Water transported by the Northern Current. Ephyrae showed diel vertical migrations of short-extent in the first 50 m, with a wide distribution above the thermocline and the Deep Chlorophyll Maximum during daytime, being more concentrated towards the surface at night. The results suggest the population connectivity of P. noctiluca between the Atlantic and the Mediterranean. In that case, the abundance variability of the species in the Mediterranean could be modulated by its entrance associated with the inflow of Atlantic Water through the Strait of Gibraltar.


Assuntos
Cifozoários/fisiologia , Água/química , Animais , Gibraltar , Mar Mediterrâneo
17.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33836589

RESUMO

For organisms to have robust locomotion, their neuromuscular organization must adapt to constantly changing environments. In jellyfish, swimming robustness emerges when marginal pacemakers fire action potentials throughout the bell's motor nerve net, which signals the musculature to contract. The speed of the muscle activation wave is dictated by the passage times of the action potentials. However, passive elastic material properties also influence the emergent kinematics, with time scales independent of neuromuscular organization. In this multimodal study, we examine the interplay between these two time scales during turning. A three-dimensional computational fluid-structure interaction model of a jellyfish was developed to determine the resulting emergent kinematics, using bidirectional muscular activation waves to actuate the bell rim. Activation wave speeds near the material wave speed yielded successful turns, with a 76-fold difference in turning rate between the best and worst performers. Hyperextension of the margin occurred only at activation wave speeds near the material wave speed, suggesting resonance. This hyperextension resulted in a 34-fold asymmetry in the circulation of the vortex ring between the inside and outside of the turn. Experimental recording of the activation speed confirmed that jellyfish actuate within this range, and flow visualization using particle image velocimetry validated the corresponding fluid dynamics of the numerical model. This suggests that neuromechanical wave resonance plays an important role in the robustness of an organism's locomotory system and presents an undiscovered constraint on the evolution of flexible organisms. Understanding these dynamics is essential for developing actuators in soft body robotics and bioengineered pumps.


Assuntos
Cifozoários/fisiologia , Natação/fisiologia , Animais , Fenômenos Biomecânicos , Módulo de Elasticidade , Hidrodinâmica , Modelos Biológicos , Músculos/fisiologia
18.
PLoS One ; 16(3): e0248814, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33739995

RESUMO

Ecological profiling of non-native species is essential to predict their dispersal and invasiveness potential across different areas of the world. Cassiopea is a monophyletic taxonomic group of scyphozoan mixotrophic jellyfish including C. andromeda, a recent colonizer of sheltered, shallow-water habitats of the Mediterranean Sea, such as harbors and other light-limited, eutrophic coastal habitats. To assess the ecophysiological plasticity of Cassiopea jellyfish and their potential to spread across the Mare Nostrum by secondary introductions, we investigated rapid photosynthetic responses of jellyfish to irradiance transitions-from reduced to increased irradiance conditions (as paradigm of transition from harbors to coastal, meso/oligotrophic habitats). Laboratory incubation experiments were carried out to compare oxygen fluxes and photobiological variables in Cassiopea sp. immature specimens pre-acclimated to low irradiance (PAR = 200 µmol photons m-2 s-1) and specimens rapidly exposed to higher irradiance levels (PAR = 500 µmol photons m-2 s-1). Comparable photosynthetic potential and high photosynthetic rates were measured at both irradiance values, as also shown by the rapid light curves. No significant differences were observed in terms of symbiont abundance between control and treated specimens. However, jellyfish kept at the low irradiance showed a higher content in chlorophyll a and c (0.76±0.51SD vs 0.46±0.13SD mg g-1 AFDW) and a higher Ci (amount of chlorophyll per cell) compared to jellyfish exposed to higher irradiance levels. The ratio between gross photosynthesis and respiration (P:R) was >1, indicating a significant input from the autotrophic metabolism. Cassiopea sp. specimens showed high photosynthetic performances, at both low and high irradiance, demonstrating high potential to adapt to sudden changes in light exposure. Such photosynthetic plasticity, combined with Cassiopea eurythermal tolerance and mixotrophic behavior, jointly suggest the upside-down jellyfish as a potentially successful invader in the scenario of a warming Mediterranean Sea.


Assuntos
Espécies Introduzidas , Fotossíntese/fisiologia , Cifozoários/fisiologia , Água do Mar , Análise de Variância , Animais , Clorofila/análise , Luz , Mar Mediterrâneo , Compostos Orgânicos/análise , Fotossíntese/efeitos da radiação , Proteínas/análise , Cifozoários/efeitos da radiação , Simbiose/fisiologia , Simbiose/efeitos da radiação
19.
Toxins (Basel) ; 13(1)2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33430137

RESUMO

Scyphozoan envenomation is featured as severe cutaneous damages due to the toxic effects of venom components released by the stinging nematocysts of a scyphozoan. However, the oedematogenic property and mechanism of scyphozoan venoms remain uninvestigated. Here, we present the oedematogenic properties of the nematocyst venom from Nemopilema nomurai (NnNV), a giant stinging scyphozoan in China, for the first time, using in vivo and in vitro models with class-specific inhibitors. NnNV was able to induce remarkable oedematogenic effects, including induction of significant oedema in the footpad and thigh of mouse, and increase in vascular permeability in the dorsal skin and kidney. Moreover, batimastat, a specific metalloproteinase inhibitor, could significantly reduce the Evan's blue leakage in the damaged organs and attenuate paw oedema after 12 h, but exerted no influence on NnNV-induced thigh oedema. These observations suggested a considerable contribution of NnNV metalloproteinase-like components to the increased vasopermeability, and the participation was strongly suggested to be mediated by destroying the integrity of the vascular basement membrane. Moreover, partial isolation combined LC-MS/MS profiling led to identification of the protein species Nn65 with remarkable metalloproteinase activity. This study contributes to the understanding of the effector components underlying the cutaneous damages induced by scyphozoan stings.


Assuntos
Venenos de Cnidários/toxicidade , Edema/induzido quimicamente , Metaloproteases/toxicidade , Cifozoários/fisiologia , Administração Tópica , Animais , Permeabilidade Capilar/efeitos dos fármacos , Carpas , Fracionamento Químico , Cromatografia em Gel , Injeções Intramusculares , Metaloproteases/metabolismo , Camundongos , Camundongos Endogâmicos ICR
20.
Ann Rev Mar Sci ; 13: 375-396, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32600216

RESUMO

Jellyfish have provided insight into important components of animal propulsion, such as suction thrust, passive energy recapture, vortex wall effects, and the rotational mechanics of turning. These traits are critically important to jellyfish because they must propel themselves despite severe limitations on force production imposed by rudimentary cnidarian muscular structures. Consequently, jellyfish swimming can occur only by careful orchestration of fluid interactions. Yet these mechanics may be more broadly instructive because they also characterize processes shared with other animal swimmers, whose structural and neurological complexity can obscure these interactions. In comparison with other animal models, the structural simplicity, comparative energetic efficiency, and ease of use in laboratory experimentation allow jellyfish to serve as favorable test subjects for exploration of the hydrodynamic bases of animal propulsion. These same attributes also make jellyfish valuable models for insight into biomimetic or bioinspired engineeringof swimming vehicles. Here, we review advances in understanding of propulsive mechanics derived from jellyfish models as a pathway toward the application of animal mechanics to vehicle designs.


Assuntos
Modelos Biológicos , Cifozoários/fisiologia , Natação , Animais , Fenômenos Biomecânicos , Hidrodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...